T(6th Sm.)-Physics-H/CC-13/CBCS

2021

PHYSICS — HONOURS

Paper : CC-13

(Electromagnetic Theory)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :

- (a) Find the velocity of light in a medium for which relative permittivity and relative permeability are 3 and 2 respectively.
- (b) Define a good and a bad conductor from the point of view of the frequency of the incident electromagnetic wave.
- (c) Show that the intrinsic impedance for a plane wave in the linear isotropic medium is $\sqrt{\mu/\epsilon}$.
- (d) What do you mean by Evanescent wave?
- (e) In a 2-dimensional anisotropic medium, the electric displacement \vec{D} is given by $\vec{D} = \frac{3}{\sqrt{2}} (\hat{i} + \hat{j})$. If

the permittivity tensor is given by $\epsilon = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, find the electric field \vec{E} .

- (f) Find the state of polarization of the following light beams :
 - (i) $\vec{E} = \hat{i} a \sin(\omega t kz) + \hat{j} a \cos(\omega t kz)$
 - (ii) $\vec{E} = \hat{i} a \sin(\omega t kz) + \hat{j} b \sin(\omega t kz)$.
- (g) Calculate the thickness of a half-wave plate for a light of wavelength 500 nm. [Given : $n_0 = 1.5442$; $n_e = 1.5533$]
- (a) Show how Maxwell's equations in free space imply local conservation of charge. Show that this
 implies Kirchoff's second law.
 - (b) Consider the electromagnetic potential $U = e\phi \vec{V} \cdot \vec{A}$, where ϕ is the scalar potential and \vec{A} is the vector potential. Show that under gauge transformation, U transforms as a total derivative.

Please Turn Over

 2×5

- (c) Given the Electric field $\vec{E} = E_o(\hat{j} + a\hat{k})e^{ik_o\left[-ct + (y+\sqrt{3}z)\right]}$ where *a* is a constant. Find out
 - (i) *a*.
 - (ii) velocity of the wave
 - (iii) refractive index of the medium.
- 3. Consider circular capacitor plates parallel to each other and having radius R, total charge Q. They are separated by a distance d. Current I(t) is flowing as shown in figure.

- (a) Find the stored total energy density u in the region between the plates. (You can assume \vec{E} field to be uniform, neglect fringing effects).
- (b) Calculate the induced magnetic field (\vec{B}) .
- (c) Find Poynting vector (\vec{s}) and show its direction.
- (d) Show that $\frac{\partial u}{\partial t} + \overline{\nabla} \cdot \overline{S} = 0$. 2+2+3+3
- 4. (a) Show that in a conductor, the electric and magnetic fields are not in phase.
 - (b) Show that if a monochromatic linearly polarized plane wave is moving in an isotropic non-conducting medium, the time average of its energy density is distributed equally between the magnetic and electric fields.
 - (c) What is Skin Depth? Find the phase velocity and the magnitude of attenuation constant of plane wave at a frequency of 10 GHz in polyethelene.

(Given :
$$\mu = \mu_0$$
; $\epsilon_r = 2.3$; $\sigma = 2.56 \times 10^{-4} S/m$) 3+4+(1+2)

- 5. (a) What is Brewster's angle?
 - (b) An incident wave along $\frac{1}{2}\hat{i} \frac{\sqrt{3}}{2}\hat{j}$ falls on a refractive surface at z = 0. If the refractive index

is $\mu = \sqrt{3}$, find the propagation vectors for the reflected and the refracted rays.

(2)

(2+1)+3+(1+2+1)

- (c) A plane electromagnetic wave falls obliquely on air-glass interface. Find the angle of incidence for which the reflection and transmission co-efficients are each equal to 0.3.
- (d) Show that the frequency of the wave remains unchanged upon refraction, when an electromagnetic wave is incident on the plane interface between two different media. 2+3+3+2
- **6.** (a) Explain how to distinguish the following :
 - (i) circularly polarized
 - (ii) elliptically polarized
 - (iii) mixture of elliptically polarized and unpolarized light.
 - (b) Explain how continuous variation in retardance of a wave plate can be achieved.
 - (c) An negative crystal is cut so that the optic axis is perpendicular to the plane of the paper. Given $n_0 = 1.66$, $n_e = 1.50$.

- (i) State with reason which is the E and O ray out of the two rays.
- (ii) Determine the angle between the two refracted rays.
- (d) Two nicol prisms are so arranged that no light is transmitted through them. The analyzer is now rotated through 30° and then through another 45°. The transmitted intensities were noted in each case. which of the two intensities will be greater than the other and by what percentage?

3+2+(1+2)+2

- 7. (a) A left circularly polarized light propagating along z direction falls on a half-wave plate made from calcite crystal. Optic axis of the plate is cut parallel to the surface. Write down x and y components of electric field after the wave emerges out of the plate. What is the state of polarization of the emergent light?
 - (b) The specific rotation of light with $\lambda = 5893$ Å in quartz is 21.7°. Find the difference in the refractive indices between the two circular motions in the medium.
 - (c) Explain Fresnel's theory of rotation of plane of polarization by an optically active substance. A plane polarized light is found to rotate 12° due to propagation through 20 cm polarimeter tube. If the specific rotation of the solution is 60° dm⁻¹g⁻¹cm⁻³, find the concentration of the solution.

3+2+(3+2)

(3)